World Association for Transport Animal Welfare and Studies

Workshop 2004 Common ground: moving forward with animals

Animal power for crop production: new tillage or no tillage? Benefits and constraints

Jim Ellis-Jones and Andy Whitmore

SILSOE RESEARCH INSTITUTE

Areas to be discussed

drawing primarily on SSA (Nigeria and Zimbabwe) experience

- Power sources availability in selected regions
- Evolution of tillage methods
- Advantages and disadvantages of conventional tillage
- Benefits and problems associated with conservation tillage
- Increasing use of transgenic crops in conservation agriculture
- Where to next?

in selected re	egions-	unchanging	statistics
Region H	luman	Animal	Tracto
N Africa	69	17	14
sub-Saharan Africa	89	10	1
Asia (excl China)	68	28	4
Latin America	59	19	22
Overall	71	23	6

SILSOE RESEARCH INSTITUTE

ECONOMIC VALUE OF	DRAFT ANIMALS
Zimbabwe smallho	older sector

ECONOMIC USE	% OF TOTAL VALUE		
	CATTLE	DONKEYS	
Draft power	<mark>63.6</mark>	<mark>95</mark>	
Milk	13.6		
Manure	3.9	2	
Meat	8.5	////-//	
Herd growth	10.4	3-5	
Social value	important		
TOTAL	100	100	

Draft includes, primarily, tillage and transport, with ploughing needing most power

Deferment No. 8

1/24/	
	SILSOE RESEARCH INSTITUTE
	Evolution of tillage methods
•	Intensive and continuous use of the plough
	 criticised, but widely practised
•	Reduced tillage
	Ripping or harrowing
•	Green manuring and incorporation by plough or hoe
	 Especially in humid tropics and higher potential areas
	 More problematic in semi-arid areas
•	Conservation agriculture (increasingly seen as the way forward)
	 Zero-tillage with direct seeding
	 Permanent soil cover (thro' green manure cover crops, or at least 30% crop residues)
	 Crop rotations (usually cereal-legume)
	 In field and between field soil and water conservation measure
	 Currently estimated to be 67 million ha worldwide 9.2 m ha in Argentina 13.5 m ha in Brazil
	Areas increasingly associated with transgenic crops

.

SILSOE RESEARCH INSTITUTE

Advantages associated with conventional tillage

- Well known, trusted and tested technology
- Provides soil moisture conservation if undertaken at the right time.
- Means of controlling weeds
- Provides good seed bed for planting
- Land preparation can be combined with planting

Interestingly better resourced households often plough three times

- Immediately after harvest for moisture conservation
- During the middle of the dry season (especially if rain falls) for weed control
- Just prior to planting to prepare the seed bed

SILSOE RESEARCH INSTITUTE

Skewed ownership of draft animals in Zimbabwe (smallholder sector)

		% of fa (n=2	rmers 48)
No animals			37
Inadequate animals	Donkeys only	10	
	Cattle and donkeys	2	16
	Cattle only	4	
Adequate animals	Donkeys only	4	
	Donkeys and cattle	12	47
	Cattle only	31	
 Over 50% of house Draught animal ow 	eholds own inadequate draft vnership is associated with b	power for primar	y tillage rmers

SILSOE RESEARCH INSTITUTE Potential benefits for conservation tillage Saving in labour Reduction in draft power requirement Poorer households can benefit Longer period available for planting → Timeliness less critical Better soil moisture conservation - Resistance to mid season droughts Improved soil organic matter, soil structure and build up in soil fertility, less erosion and reduced land degradation Increased yields and productivity

- Problem of weed control
- Need to use herbicides, possibly in initial stages (3 years)
- Build up in crop pests, especially when a rotation is not used Stem borer and cutworm in maize

SILSOE RESEARCH INSTITUTE

Use of transgenic crops by country

(often used in conservation agriculture)

Lead countries	Area (million ha)	% of total
USA	42.8	63
Argentina	13.9	21
Canada	4.4	7
Brazil	3.0	4
China	2.8	4
South Africa	0.4	1
India	0.1	<1
Other	0.3	<1////
Total	67.7	100

SILSOE RESEARCH BY AND A SILSOE RESEARCH BY A SILSOE

Сгор	% of global total (2003)
Herbicide tolerant soybean	61
Herbicide tolerant maize	5
Herbicide tolerant canola	5
Herbicide tolerant cotton	2
Bt/Herbicide tolerant maize	5
Bt/Herbicide tolerant cotton	4
Bt maize	13
Bt cotton	5
Total	100 (67 m ha)

SILSOE RESEARCH INSTITUTE

Where to next?

- Reduce or eliminate draft power requirements for tillage allowing animals to be used more productively → for transport, for milk, for meat
- Reduce labour input
 - To increase labour productivity and provide time for other activities
 To mitigate the effects of HIV/Aids
 - Identify legumes for food, fodder, biomass and weed control
- .
- Reduce weed competition and pest damage Improve the effectiveness of herbicides with reduced applications and safer products

 - Multi purpose control systems
 Such as push-pull (Napier and Desmodium for stemborer, Striga and soil fertility
- Is there a role for transgenic crops ? (arguments for another day)